04-boost::shared_mutex 的实现

2020/07/03 cpp_concurrency 共 6232 字,约 18 分钟

boost库的共享mutex实际上很简单,它是由条件变量、普通的mutex构成的。shared_mutex维护了2个条件变量来判断是否可读、可写。按照以下原则进行加锁和解锁:

  • 写标志位:unsigned int 最高位为1则表示已经进行写加锁
  • 读标志位:unsigned int 最高位以外的所有为不为1则表示存在读锁,读锁的个数就是该 unsigned int 变量的值
  • 写加锁 :当不存在写锁、读锁的时候可以获取写锁,否则一直等待
  • 读加锁 :不存在写锁的时候可以进行加锁,否则一直等待。读锁可以多次加锁,每加一次则读锁计数加一
  • 锁释放 :写锁释放时
  • shared_lock: boost::shared_mutex 可以配合 boost::unique_lock boost::guard_lock 以及 shared_lock 使用。惟一的区别是,shared_lock 是获取读锁,其他的是获取写锁。

存在的问题:

  • 写锁饥饿:由于写锁需要等待所有读锁解锁完毕后才能获取,因此当一个线程尝试获取写锁的时候,其他的线程一直进行读锁获取,会导致写锁饥饿的情况。按照boost的共享锁的实现,它是一个读优先锁
  • 锁唤醒 :当尝试加写锁的线程由于不满足条件而进行条件变量wait之后,其他线程释放写锁之后由于shared_mutex中没有写锁等待的计数因此不知道是否有写锁存在,因此只能选择唤醒所有其他的条件变量。更好的办法是对当前读写锁分别进行计数,根据读写锁的数量来选择性的唤醒不同的锁。由于有了读写计数,则可以很方便的选择唤醒哪个条件变量,这样还可以实现读写优先锁。写优先级的读写锁可以参见《读写锁、自旋锁、信号量的CPP11实现》。
namespace boost {
  namespace thread_v2 {

    class shared_mutex
    {
      typedef boost::mutex              mutex_t;
      typedef boost::condition_variable cond_t;
      typedef unsigned                  count_t;

      mutex_t mut_;
      cond_t  gate1_;
      // the gate2_ condition variable is only used by functions that
      // have taken write_entered_ but are waiting for no_readers()
      cond_t  gate2_;
      count_t state_;

      static const count_t write_entered_ = 1U << (sizeof(count_t)*CHAR_BIT - 1);
      static const count_t n_readers_ = ~write_entered_;

      bool no_writer() const
      {
        return (state_ & write_entered_) == 0;
      }

      bool one_writer() const
      {
        return (state_ & write_entered_) != 0;
      }

      bool no_writer_no_readers() const
      {
        //return (state_ & write_entered_) == 0 &&
        //       (state_ & n_readers_) == 0;
        return state_ == 0;
      }

      bool no_writer_no_max_readers() const
      {
        return (state_ & write_entered_) == 0 &&
               (state_ & n_readers_) != n_readers_;
      }

      bool no_readers() const
      {
        return (state_ & n_readers_) == 0;
      }

      bool one_or_more_readers() const
      {
        return (state_ & n_readers_) > 0;
      }

      shared_mutex(shared_mutex const&);
      shared_mutex& operator=(shared_mutex const&);

    public:
      shared_mutex();
      ~shared_mutex();

      // Exclusive ownership

      void lock();
      bool try_lock();
#ifdef BOOST_THREAD_USES_CHRONO
      template <class Rep, class Period>
      bool try_lock_for(const boost::chrono::duration<Rep, Period>& rel_time)
      {
        return try_lock_until(chrono::steady_clock::now() + rel_time);
      }
      template <class Clock, class Duration>
      bool try_lock_until(
          const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
      template<typename T>
      bool timed_lock(T const & abs_or_rel_time);
#endif
      void unlock();

      // Shared ownership

      void lock_shared();
      bool try_lock_shared();
#ifdef BOOST_THREAD_USES_CHRONO
      template <class Rep, class Period>
      bool try_lock_shared_for(const boost::chrono::duration<Rep, Period>& rel_time)
      {
        return try_lock_shared_until(chrono::steady_clock::now() + rel_time);
      }
      template <class Clock, class Duration>
      bool try_lock_shared_until(
          const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
      template<typename T>
      bool timed_lock_shared(T const & abs_or_rel_time);
#endif
      void unlock_shared();
    };

    inline shared_mutex::shared_mutex()
    : state_(0)
    {
    }

    inline shared_mutex::~shared_mutex()
    {
      boost::lock_guard<mutex_t> _(mut_);
    }

    // Exclusive ownership

    inline void shared_mutex::lock()
    {
      boost::unique_lock<mutex_t> lk(mut_);
      gate1_.wait(lk, boost::bind(&shared_mutex::no_writer, boost::ref(*this)));
      state_ |= write_entered_;
      gate2_.wait(lk, boost::bind(&shared_mutex::no_readers, boost::ref(*this)));
    }

    inline bool shared_mutex::try_lock()
    {
      boost::unique_lock<mutex_t> lk(mut_);
      if (!no_writer_no_readers())
      {
        return false;
      }
      state_ = write_entered_;
      return true;
    }

#ifdef BOOST_THREAD_USES_CHRONO
    template <class Clock, class Duration>
    bool shared_mutex::try_lock_until(
        const boost::chrono::time_point<Clock, Duration>& abs_time)
    {
      boost::unique_lock<mutex_t> lk(mut_);
      if (!gate1_.wait_until(lk, abs_time, boost::bind(
            &shared_mutex::no_writer, boost::ref(*this))))
      {
        return false;
      }
      state_ |= write_entered_;
      if (!gate2_.wait_until(lk, abs_time, boost::bind(
            &shared_mutex::no_readers, boost::ref(*this))))
      {
        state_ &= ~write_entered_;
        return false;
      }
      return true;
    }
#endif

#if defined BOOST_THREAD_USES_DATETIME
    template<typename T>
    bool shared_mutex::timed_lock(T const & abs_or_rel_time)
    {
      boost::unique_lock<mutex_t> lk(mut_);
      if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
            &shared_mutex::no_writer, boost::ref(*this))))
      {
        return false;
      }
      state_ |= write_entered_;
      if (!gate2_.timed_wait(lk, abs_or_rel_time, boost::bind(
            &shared_mutex::no_readers, boost::ref(*this))))
      {
        state_ &= ~write_entered_;
        return false;
      }
      return true;
    }
#endif

    inline void shared_mutex::unlock()
    {
      boost::lock_guard<mutex_t> _(mut_);
      BOOST_ASSERT(one_writer());
      BOOST_ASSERT(no_readers());
      state_ = 0;
      // notify all since multiple *lock_shared*() calls may be able
      // to proceed in response to this notification
      gate1_.notify_all();
    }

    // Shared ownership

    inline void shared_mutex::lock_shared()
    {
      boost::unique_lock<mutex_t> lk(mut_);
      gate1_.wait(lk, boost::bind(&shared_mutex::no_writer_no_max_readers, boost::ref(*this)));
      count_t num_readers = (state_ & n_readers_) + 1;
      state_ &= ~n_readers_;
      state_ |= num_readers;
    }

    inline bool shared_mutex::try_lock_shared()
    {
      boost::unique_lock<mutex_t> lk(mut_);
      if (!no_writer_no_max_readers())
      {
        return false;
      }
      count_t num_readers = (state_ & n_readers_) + 1;
      state_ &= ~n_readers_;
      state_ |= num_readers;
      return true;
    }

#ifdef BOOST_THREAD_USES_CHRONO
    template <class Clock, class Duration>
    bool shared_mutex::try_lock_shared_until(
        const boost::chrono::time_point<Clock, Duration>& abs_time)
    {
      boost::unique_lock<mutex_t> lk(mut_);
      if (!gate1_.wait_until(lk, abs_time, boost::bind(
            &shared_mutex::no_writer_no_max_readers, boost::ref(*this))))
      {
        return false;
      }
      count_t num_readers = (state_ & n_readers_) + 1;
      state_ &= ~n_readers_;
      state_ |= num_readers;
      return true;
    }
#endif

#if defined BOOST_THREAD_USES_DATETIME
    template<typename T>
    bool shared_mutex::timed_lock_shared(T const & abs_or_rel_time)
    {
      boost::unique_lock<mutex_t> lk(mut_);
      if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
            &shared_mutex::no_writer_no_max_readers, boost::ref(*this))))
      {
        return false;
      }
      count_t num_readers = (state_ & n_readers_) + 1;
      state_ &= ~n_readers_;
      state_ |= num_readers;
      return true;
    }
#endif

    inline void shared_mutex::unlock_shared()
    {
      boost::lock_guard<mutex_t> _(mut_);
      BOOST_ASSERT(one_or_more_readers());
      count_t num_readers = (state_ & n_readers_) - 1;
      state_ &= ~n_readers_;
      state_ |= num_readers;
      if (no_writer())
      {
        if (num_readers == n_readers_ - 1)
          gate1_.notify_one();
      }
      else
      {
        if (num_readers == 0)
          gate2_.notify_one();
      }
    }

  }  // thread_v2
}  // boost

文档信息

Search

    Table of Contents